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Low-order chaos in sympathetic nerve activity and scaling of heartbeat intervals
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The mechanism of 1/f scaling of heartbeat intervals remains unknown. We recorded heartbeat intervals,
sympathetic nerve activity, and blood pressure in conscious rats with normal or high blood pressure. Using
nonlinear analyses, we demonstrate that the dynamics of this system of three variables is low-order chaos, and
that sympathetic nerve activity leads to heartbeat interval and blood pressure changes. It is suggested that
impaired regulation of blood pressure by sympathetic nerve activity is likely to cause experimentally observ-
able steeper scaling of heartbeat intervals in hypertensive~high blood pressure! rats.
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I. INTRODUCTION

The power spectra of heartbeat intervals from healthy
dividuals exhibit a scale invariant 1/f pattern in the low-
frequency range (f ,0.1 Hz) @1–3#. Recent studies show tha
loss of this 1/f slope@4# and loss of heartbeat-interval mu
tifractality @5# are closely correlated to the prognosis a
severity of heart disease, but the mechanism underlying
heartbeat-interval power law scaling remains unknown@6,7#.
Scale invariance is commonly associated with the cha
dynamics, so nonlinearity in the dynamics of the syst
regulating heartbeat intervals would be a prime susp
Physiologically, heartbeat intervals are determined by sy
pathetic nerve activity and blood pressure in a complex
teraction that involves the brainstem and feedback loops,
the details of the interaction are unknown for low-frequen
oscillations. One study has suggested that the low-freque
component of the heartbeat-interval power spectra is in
pendent of sympathetic nerve activity@8#. However, we re-
cently showed that the low-frequency blood pressure osc
tions arise from sympathetic nerve activity, and that
elevated levels of sympathetic nerve activity in sponta
ously hypertensive rats reduced the nonlinear correlation
tween sympathetic nerve activity and blood pressure that
ists in normotensive~normal blood pressure! rats @9#. We
therefore hypothesize that sympathetic nerve activity co
also be responsible for the 1/f slope in heartbeat interval
and examine this hypothesis, using normotensive Wis
Kyoto rats and spontaneously hypertensive rats@10#. The
latter have higher sympathetic nerve activity, and are wid
acknowledged to be an appropriate model of essential hy
tension in man.
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II. EXPERIMENTAL METHODS

The following is a brief description of our experiment
methods. We used telemetry to record electrocardiogra
@9#. The transmitter was implanted in the peritoneal cav
for 1 to 2 days before the experiment. The arterial press
signal from a transducer attached to the left femoral art
catheter was amplified. Multifiber recordings of renal sy
pathetic nerve activity@11# were made from electrode
placed on the left renal nerve fascicle. Neural recording e
trodes were connected to a high-impedance probe, wh
was connected to a differential amplifier with a band-pa
filter of 50–1000 Hz. The filtered neurogram was integra
by a resistance-capacitance circuit~time constant520 ms).
Electrocardiogram, blood pressure, and renal sympath
nerve activity were simultaneously recorded for over 1
min in conscious, unrestrained rats, both normotensive
spontaneously hypertensive~seven each!. The signals were
digitized with an analog-to-digital converter and sampled
2 kHz. A smoothed instantaneous heart rate time series
constructed from heartbeat intervals between theR waves of
the electrocardiogram using an algorithm proposed
Bergeret al. @12#. The time series of heart rate, blood pre
sure, and renal sympathetic nerve activity were splined
sampled at 64 Hz, so that values of the entire construc
time series were made to occur simultaneously. To ens
accurate preservation of the low-frequency~,0.1 Hz! sig-
nals, we used a Butterworth filter, which lost no more th
0.5 dB in the passband,0.1 Hz and had at least 15 dB o
attenuation in the stopband.0.15 Hz. We visually confirmed
the absence of aliasing errors due to digitization and filteri

III. MATHEMATICAL METHODS AND RESULTS

Figure 1 shows a typical heart-rate power spectrum fr
a normotensive rat plotted with log-log axes. Regress
analysis was performed between 0.0005 and 0.02 Hz.
similar manner to the power spectra in healthy humans@1,3#,
©2003 The American Physical Society15-1
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the slope of the line fitted to the data is'21, indicating a
1/f relationship between frequency and power. The mean
standard error of the slope from normotensive rats w
21.3560.11 (n57). In contrast, the corresponding slope
spontaneously hypertensive rats was significantly greate
21.9560.12 (n57) (p,0.05).

Several methods have been proposed to detect chaoti
havior in biological systems which tend to be noisy@13–15#.
We used a recently developed algorithm@16#, because it was
the only method thought to be sensitive in cases where
chastic and deterministic components are both involved. T
method first fits a nonlinear autoregressive model to a t
series, followed by an estimation of the characteristic ex
nents of the model over the observed probability distribut
of states for the system. More specifically, the model fo
system outputy can be written as

yn5F@yn21 ,...,yn2k#1k«n ,

whereF is a nonlinear~polynomial! function corresponding
to the deterministic part,k is a constant, and«n are indepen-
dent, identically distributed Gaussian random variables.
k«n term corresponds to the stochastic part. We resam
the filtered heart rate, renal sympathetic nerve activity,
blood pressure data at 2 Hz@H(t), S(t), and B(t)] and
applied the above algorithm for data lengths of 500 s. T
solid lines in Fig. 2~a! show a 500-s segment ofH(t), S(t),
andB(t) recorded from a normotensive rat, the dotted lin
the result of the fit. The fit is remarkably accurate, consid
ing that, for example, only 11 coefficients are needed to
fine 1000 points~500 s, 2 Hz! for the S(t) trace in Fig. 2~a!

FIG. 1. Low-frequency portion of heart rate~beats/min! oscilla-
tion power spectrum from a normotensive rat. The crosses de
the regression line fitted over the range of 0.0005–0.02 Hz to
experimental data. Inset: Phase portrait.
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~equation given in the Appendix!. It must be noted, however
that the coefficients found for a particular data segment
not describe the coefficients for an adjacent data segm
because the stochastic component brings about the sen
dependence on initial conditions in this chaotic system~see
below!, resulting in rapid diversion from predicted values

From the models, we obtained the characteristic ex
nents of the system by rewriting the model as
j-dimensional system, wherej is the value of the largest de
lay in the model. The maximum dimension~delay! for any of
the rats was low, at five. The largest Lyapunov exponents
H(t), S(t), andB(t) were calculated for five random seg
ments in each animal, and were always found to be posit
thereby indicating chaotic dynamics.

To find further evidence of low-order chaos, we co
structed phase portraits in two-dimensional state sp
@S(t), S(t1T)#. Plot a of Fig. 3 shows that some of th
cycles in the phase portrait seem to have approximately
same period. Similarly, Fig. 2~b! shows cycles with a;20-s
period~0.05 Hz!, and Fig. 1, cycles of 0.01, 0.005, and 0.0
Hz as well. We constructed stroboscopic plots of@S(t), S(t
1T)# for an incident wave of 0.005 Hz. In plota of Fig. 3
(a21) we can see stretching, folding, and compression, p
cesses peculiar to low-order chaos. However, these proce
were observed for 40 min at most, because the circula
system was not being forced by a single oscillator at 0.0
Hz. Similarly, in plotb of Fig. 3 ~incident wave of 0.002 Hz!
and in plotg of Fig. 3 ~incident wave of 0.005 Hz! show
evidence of determinism forS(t)2H(t) andS(t)2B(t) dy-
namics, respectively. The correlation dimensions of su
phase portraits ofS(t) were also found to be low (2.3
60.10 in normotensive rats and 2.3360.10 in spontaneously
hypertensive rats!, another sign of chaotic dynamics. In sum
mary, evidence for chaotic dynamics in the three-varia
system consisted of continuous broad band power spe
positive Lyapunov exponents, trajectories typical of lo

te
e

FIG. 2. ~a! Filtered recording of heart rate@H(t) (beats/min)#,
renal sympathetic nerve activity@S(t) ~arbitrary units!# and blood
pressure@B(t) (mmHg)# from the rat in Fig. 1~solid line! and fit of
a nonlinear autoregressive model~dotted line!. The two lines are so
close as to be indistinguishable.S(t) andH(t) share the same po
larity and approximate timing of their extrema. Panel~b! shows the
box in panel~a! on an expanded time scale.S(t) peaks clearly
precedeH(t) peaks andB(t) nadirs.
5-2
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dimensional chaos, and phase portraits with a low numbe
correlation dimensions.

To analyze the correlation between sympathetic nerve
tivity and the other parameters, we calculated mutual in
mation values betweenS(t) andH(t) and betweenS(t) and
B(t), according to an algorithm proposed by Fraser a
Swinney@17# and applied in our previous study@18#. Mutual
information, to be defined precisely later, can be used
measuring the nonlinear as well as the linear dependenc
two variables. For a pair of time series:S5$S(t)% and Q
5$Q(t)%, we measured how dependent the values ofQ(t
1T) are on the values ofS(t). We made the assignmen
@s,q#5@S(t), Q(t1T)# to consider a general coupled sy
tem ~S, Q!. The mutual information of this systemI (S, Q) is
defined as the answer to the question, ‘‘Given a measurem
of a values, how many bits on average can be predict
about a valueq in probability?’’

FIG. 3. Phase portraits and stroboscopic plotsa, b, and g of
@S(t),S(t18)#, @S(t),H(t)#, and@S(t),B(t)#. The phases of inci-
dent waves are from 0° to 330° with a step of 30°.S(t), renal
sympathetic nerve activity~arbitrary units!; H(t), heart rate;B(t),
blood pressure.
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I ~S, Q!5E Psq~s, q!log@Psq~s, q!/„Ps~s!Pq~q!…#dsdq,

where~i! S andQ denote the systems,~ii ! Ps(s) andPq(q)
are the probability densities ats andq, respectively, and~iii !
Psq(s, q) is the joint probability density ats andq @17#. If
the value of mutual information for~S, Q! is larger, it means
that mutual dependence betweenS and Q is stronger. The
data length ofS(t), H(t), andB(t) was 213 ~58192!, that is,
4096 s. Roulston has reported that for smaller data
~,500!, bias and random error can be a problem@19#. We
therefore calculated mutual information values for datas
of length 8192. Because the algorithm was developed fo
discrete case, mutual information values were normalized
that the values between 0 and 1 are independent of the
length. According to our previous study@18#, a mutual infor-
mation value of 0.047 is generally taken as the thresh
value to discriminate correlated data from noncorrela
data. We calculated the mutual informationI (T) of ~S, Q!; S
is a time series of renal sympathetic nerve activity andQ is
another time series,H(t1T) or B(t1T), with a time delay
T. T was then between210 and 10 s in steps of 1 s. Th
maximum value ofI (T) betweenSandQ whereT was from
210 to 10 s is denoted byI max(S, Q). We considered the time
delayTmax(S, Q), at which the maximum value ofI (T) of ~S,
Q! was given, as a physiological delay between these par
eters@18#. If Tmax(S, Q) is positive, it means thatS leadsQ. If
Tmax(S, Q) is negative, vice versa.

I max(S, H) was 0.1460.06 andI max(S, B) was 0.1160.05
(n57). The values of these data were clearly above thre
old, indicating a strong correlation between sympathe
nerve activity and the other variables. This correlation is a
observed in Fig. 2. Calculations showed thatS(t) led H(t)
by 1.160.5 s andB(t) by 1.560.7 s (n57). This delay be-
tween sympathetic nerve activity and the other variable
also observable in Fig. 2~b! with the expanded time axis. In
general, theS(t) peaks precede theH(t) peaks andB(t)
nadirs. We interpret this result as an indication that sl
oscillations of heart rate and blood pressure are produce
slow oscillations of sympathetic nerve activity. The usu
physiological interaction between blood pressure, heart r
and sympathetic nerve activity is known as the barorefl
wherein an increase~decrease! in blood pressure is compen
sated for by decrease~increase! in heart rate and vascula
resistance, mediated by sympathetic nerve activity emana
from a reflex center in the brainstem. In other words, blo
pressure drives sympathetic nerve activity. However, F
2~a! and 2~b! show thatS(t) peaks precede peaks ofH(t)
and nadirs ofB(t), which is consistent with a recent repo
that sympathetic nerve activity precedes blood pressur
conscious rats@9#. Thus, correlation in the low-frequenc
band~,0.1 Hz! is actually baroreflex independent. This bo
sters the view that sympathetic nerve activity may play
causative role in hypertension. This hypothesis is suppo
by the observation that some of the nonlinear component
blood pressure regulation remain after baroreceptor dene
tion ~neural incapability of monitoring blood pressure! @20#.
The sympathetic nerve activity was significantly higher
our spontaneously hypertensive rats than in the normoten
5-3
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rats (16.166.2 versus 7.262.5 arbitrary units;P,0.01), de-
spite their higher blood pressure (156617 versus 110
67 mmHg; P,0.001). It seemed obvious that the intera
tion between sympathetic nerve activity and blood press
might be impaired in spontaneously hypertensive rats,
that this might also cause the 1/f slope to be steeper.

IV. CONCLUSIONS

Spontaneously hypertensive rats, an animal model for
man hypertension, have steep scaling of the low-freque
portion of their heartbeat-interval power spectra. Applicat
of a nonlinear autoregressive algorithm shows that, hyper
sive or not, low-frequency heartbeat-interval power spec
characteristics are determined by the low-dimensional c
otic dynamics of a system of three variables, heartbeat in
vals, blood pressure and sympathetic nerve activity, tha
different from interactions between the variables at hig
frequencies~baroreflex!. It is suggested that decreased sen
tivity of blood pressure to sympathetic nerve activity is t
cause of the steep scaling seen in the hypertensive anim
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APPENDIX

For example, the model equation for renal sympathe
nerve activity in Fig. 2~a! is as follows:

S~ t !51.8306S~ t21!10.2496S~ t22!21.5032S~ t23!

20.0781S~ t24!10.5007S~ t25!

20.1178S~ t21!S~ t21!10.3873S~ t21!S~ t22!

10.011 S~ t21!S~ t24!20.4232S~ t22!S~ t22!

10.2139S~ t23!S~ t23!

20.0711S~ t23!S~ t25!.
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